
LESSON 4.1 Graphing Linear Equations Using a Table

a. Use the equation y = 3x + 4to fill in the table

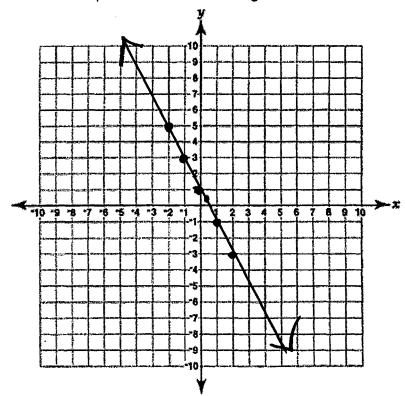
Choose any three values for x between -2 and 2 and then solve to find the corresponding value for y.

Value of "x"	Substitute x and solve for y $y = 3x + 4$	Value of "y"	Solution Point {ordered pair (x,y)}
-2	1=3(-2)+4	-2	(-2,-2)
-1	1=3(-1)+4	1	(-1,1)
0	1=3(0)+4	4	(0,4)
1	1=3(1)+4	7	(1,7)
2	1=3(2)+4	10	(2,10)

Plot the three points in the coordinate grid. Use a ruler to draw a line exactly through the points.

Find a different coordinate point that the line you drew passes through. Name that point (-3, -5)

Check that this point is a solution point of the equation y = 3x + 4

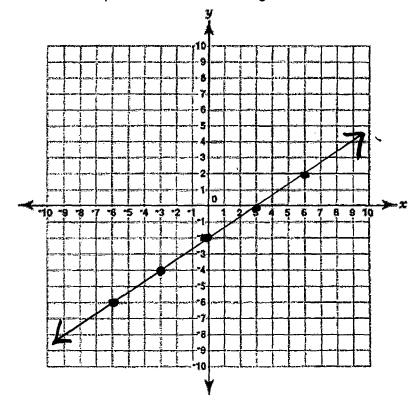

(substitute and check that the equation is still true)

b. Use the equation y = -2x + 1 to fill in the table

Choose any three values for x between -4 and 4 and then solve to find the corresponding value for y.

Value of "x"	Substitute x and solve for y $y = -2x + 1$	Value of "y"	Solution Point {ordered pair (x,y)}
-2	1=-2(-2)+1	5	(-2,5)
-1	1=-2(-1)+1	3	(-1,3)
0	1=-2(0)+1	\	(0,1)
1	Y = -2(1)+1	- 1	(1, -1)
2	1=-2(2)+1	-3	(2,-3)

Plot the three points in the coordinate grid. Use a ruler to draw a line <u>exactly</u> through the points.


Find a different coordinate point that the line you drew passes through. Name that point (,

Check that this point is a solution point of the equation y (substitute and check that the equation is still true)

c. Use the equation $y = \frac{2}{3}x - 2$ to fill in the table the decomposition of the corresponding value for y.

X	Y=3x-2	y	(x,y)
-6	1=是(学)-2	-4	(-6,-6)
-3	1 = 3 (3) -2	-4	(-3, -4)
٥	V=3(0)-2	- 2	(0,-2)
3	1=3(3)-2	0	(3,0)
6			(6,2)

Plot the three points in the coordinate grid. Use a ruler to draw a line exactly through the points.

Find a different coordinate point that the line you drew passes through. Name that point (,) Check that this point is a solution point of the equation $y = \frac{2}{3}x - 2$ (substitute and check that the equation is still true)

Homework

Make a table of 5 points like the examples we did together in class.

Graph the points and draw the line they are on.

1.
$$y = 2x + 1$$

2.
$$y = \frac{1}{2}x - 3$$

3.
$$y = 4x - 5$$

4.
$$y = -3x + 4$$

5.
$$y = \frac{3}{4}x - 1$$

6.
$$y = -2x + 1$$